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Abstract. We consider phase diagrams for a class of layered systems. Diagrams are studied 
by means of an inductive argument based on the low-temperature expansions technique. 
We show that the layered structure of the ground state enhances the emergence of an 
infinite set of phases. As examples, we consider the A N N N I  and the three-state chiral Potts 
models. We also discuss briefly a new version of the three-state Potts model which exhibits 
the phase diagram of the devil’s staircase type. 

1. Introduction 

The low-temperature expansions ( LTE) technique is often used as the first approxima- 
tion in studying phase diagrams for spin lattice systems. It has yielded phase diagrams 
with an infinite number of phases, e.g., for the A N N N I  [ l ]  and the three-state chiral 
Potts [2] models. The important feature of these two models is that at some values of 
the coupling constants, the set of ground states has a layered structure: the lattice can 
be represented as a sequence of pairwise parallel hyperplanes (layers) with each ground 
state constant in every hyperplane. Hence the ground state G is identified with a 
sequence of spin values, corresponding to values of G in consecutive layers. In this 
paper we study the problem of how the layered structure of ground states enhances 
the emergence of an infinite set of phases in the phase diagram. The method described 
here is a generalisation of an algorithm used originally in [3] to study phase diagrams 
for systems where the rigorous theory of Pirogov and Sinai [4] is applicable. One of 
the requirements imposed on such systems is that the number of ground states is finite. 

For systems with an infinite number of ground states, the LTE phase diagram has 
to be constructed by means of some inductive pattern. In the analysis of the A N N N I  

model, Selke and Fisher [ l ]  described such a pattern, hereafter referred to as the SF 
method. They define an infinite set of structural variables, with each ground state 
corresponding to some particular realisation. The key fact is that the LTE of the pressure 
can be written as a linear function of structural variables. This representation provides 
the separation of two basic features of the system. One is the geometry of the set of 
ground states expressed in terms of structural variables. Another feature is characterised 
by energetical properties, such as the configurations and energies of excitations in a 
given local environment. The presssure of the system, which is the maximum of the 
pressure function, is obtained order by order by means of linear programming pro- 
cedures. 
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In this paper we use a similar idea to study a class of layered systems containing 
the A N N N I  and the three-state chiral Potts models. We show that the layered structure 
equips the set of ground states with some general properties which enhance the 
emergence of an  infinite set of phases. The final form of the phase diagram depends 
upon energetical properties which are characteristic for each particular system. The 
idea behind our analysis is in some way a generalisation of the SF method although 
technical details are different. We also begin by representing the pressure in terms of 
structural variables, but with another arrangement of terms. Furthermore, each ground 
state is identified by a sequence of spin values rather than by a realisation of structural 
variables. Inductive steps of both methods can be compared as follows. 

( i)  In the preceding step, one defines a set of phases coexisting at some value of 
the coupling constants. In the S F  method, this set is given by the condition of consistency 
(in the sense of the consistency lemma) with two particular phases. Propositions I1 
and  111 identify consistent phases. In our  method, each element of the set is defined 
by a sequence written as a combination of two particular sequences (ground states). 
We show that phases identified in the S F  method by propositions I1 and  I11 can be 
reduced to this form. 

(ii) In the small neighbourhood of the coexistence point, the pressure function is 
reduced (in the leading order). In the SF method the reduced form consists of only 
one structural variable. The coefficient of this variable is then calculated in the leading 
order. In our method, the reduced form is an affine functional with the constant term 
consisting of just one structual variable. The reduction is done by means of proposition 
I .  The search for the corresponding coefficient, which is admittedly the hardest part 
of the analysis, has to be conducted for each system individually. 

( i i i )  The reduced pressure function is maximised and this process defines also the 
set of phases to be considered in the next step. The SF method uses standard linear 
programming procedures. In our method, we apply the construction of the phase 
diagram for a set of affine functionals (lemma in appendix 1). The result is described 
by theorem 2. Depending upon the sign of the coefficient in (ii), the inductive step 
either shows the existence of a new phase and reconstructs conditions for the next 
step, o r  no new phases ever appear in the neighbourhood of the coexistence point. 

The paper is laid out as follows. In  § 2 we define a layered system, and construct 
the representation of the LTE of the pressure in terms of structural variables. In 0 3, 
the general idea is presented of the LTE phase diagram construction. Section 4 contains 
the description of an inductive step. Throughout 09 2-4, the A N N N I  model is used as 
the example. In  § 5 we briefly describe two other examples. One is the three-state 
Potts model [2] studied orginally by the S F  method. The other example is a new version 
of the three-state Potts model which has the phase diagram of the devil’s staircase 
type. In the appendices we present the phase diagram construction for affine functionals 
and give the proof of theorem 2 .  

2. The low-temperature expansions for layered systems 

We consider a system defined on the Z3 lattice, with a finite configuration set in any 
lattice point. The system is described by a classical finite range Hamiltonian H o .  A 
configuration G is called a ground state of Ho if, for any configuration X which differs 
from G in a finite set of lattice points (a support of X ) ,  

E ( X ) Ho( X ) - Ho( G ) 3 0. 
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The configuration X is called an  excitation of G. We assume that Ho satisfies the 
sufficient condition for the existence of the low-temperature expansion ( LTE) of the 
pressure in the G boundary conditions: If { X n }  is a sequence of excitations with 
support increasing to infinity, then E ( X , , )  diverges [ 5 ] .  

Let us suppose now that the set of ground states has the following structure. There 
exists a lattice line A such that in any layer Q (i.e. hyperplane perpendicular to A )  
each ground state is a constant configuration. A system with such a property is called 
a layered system. Thus any ground state is described by a sequence of spin values 
. . . G,,  G 2 . .  . , with G, being the value of G in the ith layer. This sequence will be 
also denoted as G. 

Next we consider a collection of Hamiltonians of the form 

H o + x L  x in a neighbourhood of zero (2.1) 

where L is a finite range Hamiltonian and we assume that it partially lifts the degeneracy 
of the ground state. This means that for small values of x, the set of ground state of 
(2.1) is smaller than the set of ground states for the non-pertubed Hamiltonian. 

The simplest way of constructing a layered system is to consider a Hamiltonian 
H ,  with an  anisotropic interaction, which is ferromagnetic in each layer and competitive 
in its interlayer part. Examples of such systems are the A N N N I  and the three-state 
chiral Potts models. The generalisation is given by the following condition. 

Condition 1 .  Let G be any ground state of H o ,  and X be an excitation of G. If X '  is 
another excitation obtained from X by exciting a new layer, then E ( X ' )  - E ( X )  > 0. 
( A  layer is excited if it contains points of support.) 

Example: the A N h ' N I  model. This model is described by the Hamiltonian (s, = +, -): 

Here J ,  > 0. The first sum denotes the nearest-neighbour ferromagnetic interaction in 
planes parallel to the y z  plane, while the second and third sums correspond to the 
respectively nearest- and  next-nearest-neighbour interaction along the x axis. The 
Hamiltonian Ho is H ( J z = i J , ) .  Each ground state of H ,  is constant in any layer ( a  
plane parallel to the y z  plane). The spin sign in different layers is arbitrary with the 
restriction that at least two neighbouring layers must have the same sign (i.e. the 
configuration + - + is not allowed). 

The perturbation of Ho is described by the deviation of the NNN coupling constant 
J2 from the value t J ,  : J 2  = iJl + x.  

Our main goal is to study for layered systems the phase diagram resulting from the 
LTE technique. In this technique, each phase corresponds to a periodic ground state 
G and is described by the LTE of the pressure in G boundary conditions: 

with /3 = 1/ T incorporated into x.  Here eG is the average energy per lattice site of the 
Hamiltonian L in the ground state 6, and E,  corresponds to an excitation energy E ( X )  
for some excitation X of G. The coefficient n P ( x )  is the sum of terms exp[x(L(X)  - 
L ( G ) ) ]  for all excitations X (modulo translations) with energy E, (cf also [ 6 ] ) .  
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Since each ground state G is identified with a sequence of spin values, the expansion 
coefficient n f  can be written in terms of finite subsequences. The heuristic argument 
for this fact can be found in [l] .  Let A be a finite sequence of spin values. In N 
consecutive layers A appears N,( G) = lA( G ) N  times (modulo boundary terms) as a 
subsequence of G. The number / A (  G )  is the density of A in G. Following [ 11, it will 
be called a srrucrural variable. Since in the LTE technique we restrict our attention to 
periodic ground states only, I,( G )  is well defined. 

Structural variables satisfy relations (lBI is the length of B ) :  

In particular, Xu I,( G )  = 1, with summation over all spin values a. 
With the help of structural variables, the coefficient n? can be written in the form 

The restriction on IAl comes from the finiteness of the range of H,, and condition 1. 
Inserting (2.4) into (2.2), one obtains the representation of the LTE by structural 
variables. This representation is different from the one used in [I], where all terms 
corresponding to a given structural variable lA have been collected into one coefficient 
aA. Since the series (2.2) is not necessarily convergent, aA may be divergent. Therefore 
we will use the arrangement of the series in which all terms corresponding to a given 
excitation energy Ei are collected into n?. 

The coefficient e, of the linear term in (2.2) also can be expressed by structural 
variables, but the exact form depends upon the perturbation L and cannot be 
generalised. 

In the A N N N I  model, we consider sequences ( k )  defined as a band of k spins with 
the same sign bordered by spins of the opposite sign. The corresponding structural 
variable is denoted by lk(G) .  The sequence ( k )  can be realised in two ways, differing 
by the sign of the first spin. In  examples, we will choose realisation with the first + spin. 

3. The phase diagram for layered systems: general construction 

The infinite series appearing in (2.2) is potentially divergent, and nothing is in general 
known about its behaviour (for example, if it is asymptotic). Therefore it is truncated 
at an arbitrary finite order, say N. The phase diagram in this order is obtained by 
maximising, for each value of the parameter x separately, the expression: 

N 

-xeG+ C n?(x) (3.1) 

There are two possible outcomes of maximisation. First (3.1) can be maximised by a 
single ground state G and in this case x falls into the region occupied by the phase 
G. Alternatively, several ground states maximise (3.1) simultaneously. In this case 
x = x ( P )  is the line of coexistence of corresponding phases and also the borderline 
between two regions. The borderline is potentially unstable, i.e. the inclusion of 
higher-order terms in (3.1) may result in the appearance of new phases at its locus. 
The higher-order analysis is conducted in the following way. One argues that new 
terms introduce corrections o[exp(-PE,)]. Hence it is enough to study only a small 
neighbourhood of the borderline x(P), within which one can restrict attention to 

! = I  
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ground states coexisting at x ( p )  at order N. We should remark here that in view of 
the potential divergence of (2.2) the meaning of a ‘small neighbourhood’ is not clear. 
This problem is embedded into the wider question about the interpretation of the LTE 

phase diagram. Except for special systems with a finite number of ground states (cf 
[ 5 ]  where the phase diagram is shown to be asymptotic to the rigorous one) this 
problem has not been solved so far. 

Let us now describe briefly the method for studying the maximisation of (3.1).  In 
the zero order (corresponding to zero temperature) (3.1) consists only of the linear 
term -xeG.  Hence the region of negative x is occupied by ground states with maximal 
eo, while positive values of x fall into the region occupied by ground states with 
minimal e G .  All other ground states coexist at zero. Hence the analysis can be restricted 
in the first order to a small neighbourhood of the origin. 

Suppose now that in the Nth  step we consider a borderline x N - l  defined in order 
N - 1 with several coexisting phases. In a small neighbourhood of x N - ,  of radius 
o[exp(-pEN-,)], (3.1) assumes the form: 

The correction term, which can be disregarded in order N, arises from higher power 
terms of the Taylor expansion of n? around x N - ,  . Hence (3.2) is an affine functional 
and maximisation of (3.1) reduces to the problem of finding the phase diagram for a 
set of affine functionals. This problem is discussed in appendix 2. 

The zero- and first-order analysis of the A N N N I  model gives the same results as 
obtained by the SF method. In zero order the region of negative x is occupied by the 
ferromagnetic ground state and the region of positive x by the class of ground states 
denoted by (2) (the periodic repetition of the sequence (2)). In first order the new 
phase appears, defined by the periodic repetition of the sequence (3) and denoted as 
(3). The next-order analysis of the boundary between (3) and the ferro phase shows 
that this boundary is stable. We will concentrate on the boundary (3)-(2). Phases 
coexisting there satisfy the condition: lk( G) = 0 if k 3 4 and hence they have the form: 

(2’13‘1 . . . 2’\3‘‘\) p , ,  q, L 1 if s >  1 .  (3.3) 

It is not hard to see that for ground states (3.3) 

4. The inductive step 

Let us suppose that the set of ground states of the Hamiltonian Ho is infinite. The 
basic question is then wh-ther the infinite set of phases appears in the phase diagram. 
The way to study this problem is to find an inductive pattern governing the behaviour 
of the phase diagram in increasing orders. In this section we show that the layered 
structure of ground states enhances the emergence of such a pattern. The appearance 
of the infinite set of phases depends upon specific properties of the system manifesting 
themselves in the first orders of the analysis (constituting the starting point of induction) 
and in the form of coefficients associated with the structural variables. 

The inductive step consists of four parts: 
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( i )  defining a subset of ground states, which is given in the preceding order as a 

(ii) determining the order N in which the series (2.2) is truncated, 
(iii) reducing the form of the coefficient n g ,  
(iv) constructing the phase diagram, based on the corresponding construction for 

collection of ground states coexisting at some borderline, 

affine functionals. 

4.1. The choice of a subset of ground states 

Let r be the range of the interlayer part of the Hamiltonian H , + x L :  a spin in the ith 
layer can interact at most with spins in layers i*  k, k s r. Furthermore let A, B be 
sequences of spin values. We consider a set of ground states in the form: 

( A P ~ ( A “ B ) 4 ~ A p 2 . .  . Ap~(A”B)97) p , ,  q, 3 1 if s > 1 (4.1) 

where A P  = A A . .  . A ( p  times) and ( A )  denotes an infinite sequence obtained by 
periodic repetition of A. 

Sequences A, B and the number U satisfy the following condition. 

Condition 2. /A [  3 r, and if U = 0 then [ B /  3 r. 

We assume furthermore that there exist numbers a , ,  a 2 ,  b, ,  b, such that 

l A ~ ~ + ~ (  G )  = a leG + b,  fAE#B( G) = UZeG + 6,. (4.2) 

We will show that the form (4.1) and the conditions (4.2) are reconstructed at the end 
of the inductive step, with new definitions of A and B. 

In the A N N N I  model, we will consider two generic cases. 
(a)  A = (2) (two-layer band), B = (3) (three-layer band), U = j .  Then (4.1) and (4.2) 

become: 

(2p1(2’3)41 . . .) (4.3) 

1 2 i + i (  G) = a l l2 (  G )  + b, 1213(G)= a , l , ( G ) + b , .  (4.4) 

((32’-1)p1(32’)ql.. .) (4.5) 

13,~-132~-l(G) = a l 1 2 ( G ) + b ;  

and 

(b) A = (32’-’), B = (2), U = 1. Then (4.1) and (4.2) become: 

and 

/321(  G) = ail2( G )  + 6;. (4.6) 

We remark that in the S F  method, the choice of a subset of ground states is a special 
case of (4.1). Namely, one considers there ground states consistent with a pair of 
vertices of two special forms, as follows. 

(i) Vertices (2) and (2’3), The inductive application of consistency with vertices 
(2) and (2k3), k sj, gives conditions l 3 , ~ - l 3 (  G) = 0, and hence G has the form (4.3). 
Moreover, by proposition I1 of [l] ,  (4.4) is also reproduced. 

(ii) Vertices (2’-’3) and (2’3). Consistent ground states satisfy conditions: 
l 3 2 ~ - 1 3 (  G )  = 0, k S j  - 1, and f 2 ~ + + 1 (  G )  = 0.  Hence ground states have the form (4.5). 
Condition (4.6) is the consequence of proposition I11 of [l]. 
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4.2. The order of truncation 

The choice of the order N in which (2.2) is truncated is connected with the following 
observation. Let x,$ be the borderline in order N between ground states ( A )  and 
(A"B) .  Suppose that for all ground states (4.1) 

n y ( x N )  = c , eG+d ,  i s  N. (4.7) 

Then (2.3) has the form 
N 

(xh - x ) e G +  d, e-pEf+o(e-PE,) .  
I = '  

(4.8) 

It is not hard to see that eG lies between e(A)  and e(A"B). Then the maximisation of 
(4.8) results in a trivial modification of the zero-order phase diagram: all ground states 
coexist at x N  and each of two regions defined by x N  is occupied by one of the phases 
( A )  or (A"B).  To obtain a non-trivial phase diagram, we have to find the lowest order 
in which (4.7) does not hold. Such an order is determined by the geometry of sequences 
A and A"B. Before going into details, let us introduce the following definitions. 

A sequence M is an extension of a sequence M '  if M '  is a subsequence of M. M 
is a proper extension of M '  if for all ground states (4.1), I,( G)  = lM,( G). This can 
happen in two cases: 

( i )  M '  is not a subsequence of any form (4.1), and 
(ii) M '  is a subsequence of one of forms (4.1) and M is the only extension of M '  

which also is a subsequence of the same form. 
Now we define the common core C to be the longest subsequence of both ( A )  and 

( A " B ) .  C is the proper extension of A", but it does not have a proper extension itself. 
There exist spin values p, p, v f p, C f p such that the following hold. 

( i )  Cp, pC have common proper extensions with A"+'.  
( i i )  CC has a common proper extension with A"B, and vC with BA". 
( i i i )  pCp has a common proper extension with A"+'. 
(iv) vCv has a common proper extension with BA"B. 
(v) I.LC~; has a proper common extension with A''+'& and vCi with BAUf'.  
In  the A N N N I  model, case (a),  the common core is (++)2'(++) ( j  odd) or 

( + + ) 2 ' ( - - )  ( j  even). For j odd, (+)C(+)=32'3,  ( + ) C ( - )  is the proper extension 
of 32'+', etc. In case (b), the common core is (++)2'-'32'-'(++) ( j o d d ) ,  or 
(++)2'-'32'-'( --) ( j even). Here (+)C(+) = 32'-'32'-'3 which extends to A3, 
(+)C(  - )  is the proper extension of 32'-'32' = A2B etc. 

Recall that the expansion coefficient n y ( x )  consists of structural variables IA with 
IAl S r , .  It turns out that if r, S /CI + 1 ,  then the corresponding coefficient has the form 
(4.8). 

Proposition 1.  Suppose that (4.2) holds. If a sequence M is not an extension of aC$ 
( a ,  p = p, v )  then there exist constants a M ,  b, such that for any ground state (4.1) 

(4.9) 

Proof: We define two auxiliary sequences. CA is the common extension of Cp to the 
right and pC to the left. I t  consists of the Cp part, the pC part (possibly overlapping) 
and the intermediate part which is present only if Cp and pC do not overlap. For 
example, in the latter case 

( G )  = aMeG + h. 

CA = CpDpC D = intermediate part. 
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CA is the proper extension of A"+'.  Similarly we define C, to be the shortest common 
extension of Cfi and uC. CB is the proper extension of A"BA". Any sequence (4.1) 
can be covered by translates of CA and CB in such a way that any subsequence C 
belongs to two translates. 

Now let M be a subsequence of one of the forms (4.1). One can find a translate 
of CA or C, such that the left terminal point of M lies in this translate and to the left 
of its aC part. Let the relevant translate be of CA. There are three possibilities. 

(i) M is contained in C. If d measures the occurrence of M in C, then 

I M  (G) = dlc ( G)  = dIAc( ( G )  = d (2 l~ l~+ l (  G) + /A",(  G)).  

(ii) M is contained in CA but not in C. Then 

I,,,( G) = constant x IcA(  G) = constant x IA"+l( G) 

(iii) M is not contained in CA, i.e. the right terminal point of M lies to the right 
of the PC part. Hence M contains pCP or pCf. A similar argument holds if the left 
terminal point of M lies in CB. 

4.3. The reduction of the coeficient n g  
Let N be the lowest order in which the expansion coefficient contains a structural 
variable I,,, not fulfilling (4.9). By proposition 1 ,  M is an extension of a@ with 
a, p = p, U. We will show that conditions 1 and 2 force M to be the proper extension. 

Suppose that M is an extension of kCp and it is not a proper extension. Let C' 
be the common core of ( A )  and (AU+'B) .  If C is written as CIA"C2, then it is easy 
to see that C ' =  C,AU+'C2.  Moreover C' is the proper extension of CP (and also of 
pC) .  Since M is not a proper extension, it has to contain pC'B, so 

1 MI 3 lp lp Cii 1 + 1 A 1 3 1 p Cp 1 + r. 

If X is an excitation of M, then by removing the rightmost (and possibly some other) 
excited layers, we obtain an excitation Y of a proper extension (possibly trivial) of 
pC$. By condition 1 ,  E ( X )  > E (  Y ) .  Hence I,,, does not enter into the Nth  coefficient. 
A similar argument holds if M is an extension of uCii  and for extensions of aCF then 
C' is replaced by the common core of (A"B)  and (A""B). Thus we have shown that 

(4.10) 

Here U ~ , ~ ~ ( X )  is the sum of coefficients aN,, , (x)  for proper extensions M of a@. 
With the help of structural relations (2.3), all lac,- can be expressed by one of them, 
say lGCG. All other variables entering structural relations satisfy (4.9). If we define 

U N ( X )  = ~ h i , , G ( X ) + ~ N , " , ( x ) - ~ , ~ . , , ( x ) - ~ , " , ( X )  

then (4.10) takes the form 

n E (X ) = an ( x 1 l,c,i ( G 1 + C N ~ G  + dN. (4.11) 

We remark that the reduced form (4.1 1 )  has been derived here from conditions 1 and 
2. The following part of the inductive step assumes only (4.11) so it is valid even if 
conditions 1 and 2 do not hold. 
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4.4.  f i e  phase diagram for ground states (4.1) 

Let x N - l  and x N  be boundaries between phases (A) and (A"B)  defined in orders N - 1 
and N,  respectively. All ground states (4.1) coexist at x N - ,  . In the small neighbourhood 
of x y - l  of radius o[exp(-PE,-,)] (4.11) can be evaluated at x N ,  the correction term 
of order higher than N being dropped. The constant term is also dropped, and the 
term proportional to e ,  enters into the definition of x N .  The phase diagram for ground 
states (4.1) is determined by maximising the affine functional: 

- ( x  - x N ) e c  + a N  ( xh ) Ipcp (G)  e-PE* (4.12) 

The outcome of the maximisation is described by the following theorem. 

Theorem 2. 
( 1 )  If a N ( x N ) > O ,  then the boundary x N  is stable. No phases of the form (4.1) 

appear in the phase diagram, except for (A) and (A"@. 
(2) If a N ( x N ) < O ,  then the boundary x N  is unstable. The new phase (A""B)  

appears between (A) and (A"B) .  The width of the region occupied by this phase is in 
the leading order d exp(-PE,) with 

(a) Phases which coexist at the boundary x ! ~  between ( A )  and ( A " + ' B )  are described 

(4.13) 

by the condition: I B A " B (  G )  = 0, i.e. 

G = ( A P ~ ( A U + ' B ) Y ~  . . .). 
Moreover (4.2) is reproduced, i.e. 

I A " + 2 (  G )  = a {  1 e ,  + b{ I A s , + l B ( G ) = a S e G + b i .  

(b) Phases which coexist at the boundary x k  between (A"@ and (A"+IB) are 

G = ( ( B A " ) p ~ ( B A " + ' ) 4 i ,  . .). (4.14) 

described by the condition: I A " + 2 (  G) = 0, i.e. 

Moreover (4.2) is also reproduced, i.e. 

IBA"BA"(  G) = alec;  + by I A " + l B (  G )  = a i e ,  + b;. 

The proof of theorem 2 is contained in appendix 2. We remark that in the case 
a N ( x N )  = 0, one has to consider the next order N +  1 .  As long as the ( N +  1)th 
coefficient can be written in the form (4.11), theorem 2 can be applied. If (4.11) does 
not hold, the inductive step breaks down. 

Theorem 2 closes the inductive step of our method. It reconstructs the form (4.1) 
of the set of ground states and conditions (4.2). Obviously some form of inductive 
argument is necessary to determine the sign of the coefficient aN. Condition 2 defines 
the lowest order in which induction starts. Lower-order analysis is done by the direct 
application of the construction for affine functionals, described in appendix 1 .  

In the A N N N I  model, ground states coexisting at the boundary (2)-(3) have the 
form (4.1). Hence the induction starts already in the first order. Condition 2 is satisfied, 
with (3.4) and 212(G)+3[,(G) = 1 .  In  the inductive step, case (a),  we have 

aN,(x , - , )  = -ay3(0)  - a,,.(O) = 2( j + 2 ) .  
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The right-hand side has been obtained from the coefficient b,!, of [ l ]  by taking the 
lowest-order term. The new phase (2’”3) appears between (2’3) and (2). At the 
boundary (2’+’3)-(2), coexisting ground states satisfy the condition: I,, G)  = 0, i.e. it 
is the repetition of case (a).  At the boundary (2’+’)-(2’3), coexisting ground states 
satisfy the condition: l2  I - I (G)  = 0, hence we are the the case (b). Here 

a N , , ( x N , , )  = - a r ~ 3 2 ~ + 1 3 ( 0 )  - a32i+132~(0) = 2. 

Hence the boundary (2’3) -(2’+’3) is stable. In  this way the inductive argument shows 
the existence of an infinite sequence of phases found in [ 11 : (3) + (23) + (223) -+ . . . -+ 

(2’3) + . . . + ( 2 ) .  
The width of the region occupied by (2’3) behaves in the leading order as 

c, exp[ - p (  j + 1)50] (cf [ l ] ) ,  hence it increases exponentially as the temperature 
increases. I n  [7] it is argued that this exponential growth is modified at somewhat 
higher temperatures so that the phase (2’3) disappears above some temperature T, + 0 
as j + ~ .  Hence at finite temperatures, only a finite number of phases exists. The 
argument is essentially based on combining two terms of the LTE. In our notation, it 
corresponds to combining coefficients of order N and N + 1. It can be shown that the 
latter one has the form (4.11), hence the overall coefficient preceding Ipc6(G) in (4.12) 
is 

av(x,-.) e-PE\ + ah\- , (xN\+,  e-PE\+t, 

The interplay between these two terms may lead to vanishing of (2’3) at some finite 
temperature. However, we believe that because of the potential divergence of the LTE, 

such a combination of terms is not justij’ied. The LTE technique may be applied only 
in the temperature region where higher-order terms d o  not influence the lower-order 
phase diagram in the sense described above. In systems with an  infinite number of 
ground states this region may be reduced to zero temperature only. Thus we arrive 
again at  the problem of the LTE phase diagram interpretation, already mentioned at 
the beginning of this section. 

5. Other examples 

5.1. The three-state chiral Potts model 

This model has been studied in [ 2 ]  by the S F  method from which the form of expansion 
coefficients has been adopted. We use a modified Hamiltonian which is equivalent to 
the original one. Spin values lie in Z3 ( a  group (0, 1,2} with addition modulo 3). The 
system is described by the Hamiltonian: 

Here ek denotes the base vectors of the cubic lattice, and PL is the projection on the 
spin value i at the lattice site a. The second term is the N N  ferromagnetic interaction 
between spins lying in the same plane parallel to the y z  plane. It forces each ground 
state to be constant in every such plane (layer). The first term describes the ‘chiral’ 
interaction. At K = 1, it forces ground state values in the ith and ( i +  1)th layer to 
satisfy one of the conditions: G,,, = G,; G,+, = G, + 1. Instead of using absolute values, 
we may provide information only about the jump in spin with passing from the ith to 
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( i  + 1)th layer. Hence each ground state of Ho = H (  K = 1) is described by a sequence 
of zeros and ones. One should provide information also about spin value at the origin, 
but this distinction leads to symmetrical ground states and will be ignored. The 
perturbation of Ho is given by a small variation of the coupling constant K around 
1 : K = 1 f x .  It is not hard to see that up to the constant, eG = -lo( G). Hence the region 
of negative x is occupied by ground states for which lo( G) = 0. This condition defines 
a class of ground states denoted by (1) and consisting of (012), (120), (201). Positive 
values of x fall into the region occupied by the class (0)(lo( G) = l ) ,  which consists of 
CO), ( l ) ,  (2). All other ground states coexist at zero. 

In the first order, nF(0)  = lol(G)+ llo(G). Using the phase diagram construction 
for affine functionals ( - e G ,  n F ( O ) ) ,  one shows that the new phase (01) (denoted by 
(2) in [2]) appears between (0) and (1) .  The phase diagram is symmetric with respect 
to the line x = 0, so we restrict our attention to the boundary (01)-(0). Phases coexisting 
there satisfy the condition l , , (  G )  = 0 so they are of the form (4.1) with A = (0) and 
B = ( 1 ) .  Evidently conditions 1 and 2 are satisfied so order one provides the starting 
point for induction. In the inductive step, we consider two collections of ground states. 

(i)  A =  (0), B = ( l ) ,  U = j -  1 .  The common core is C =O’-’. From [2] we have 
that in the relevant order, a N ( x N )  = -a,, < 0. 

(ii) A=(lO’-’) ,  B=(O) ,  u = l .  The common core is C=O’-’lO’-‘. From [2], 
a N ( x N )  = -avii > O .  

Hence the sequence of phases looks as follows. Between phases (0) and (Ol), the 
phase (001) appears. The bounday (01)-(001) is stable, while at the boundary (0)-(OOl), 
the new phase (031) shows up in some higher order. In general, the boundary between 
(O’-’l) and (0’1) remains stable, while at the boundary (0’1)-(O), the phase (Wfll)  
appears. This is identical as the result of [ 2 ] .  

5.2. The three-state Potts model with N N N  interaction 

In order to show that our method gives more than just the description of well known 
systems, we have studied a new version of the three-state Potts model. For lack of 
space we will not present the full argument here. It will be described at a later time, 
along with calculations of the LTE coefficients. 

The model is defined on the Z3 lattice, with spin values in Z3. We define the 
Hamiltonian 

(cf 0 5.1 for notation). The second term is ferromagnetic and has a double meaning. 
One part of it forces ground states to be constant in each plane perpendicular to the 
( 1 ,  1 , l )  axis (layer). Another part, combined with the first term, gives at x = 0 the 
competitive interlayer interaction which results in an infinite set of ground states. 
Condition 1 is satisfied by Ho= H ( 0 ) .  We introduce the following notation. A triple 
layer ( i -  1 ,  i, i +  1 )  is denoted by ‘0’ if G,,, = G, + 1 and G, = G,-, + 1 .  The triple is 
denoted by ‘cy’ if G,, ,  = G,-, with G, # G,,, . One can show that each ground state of 
Ho corresponds to a sequence of o and cy2 symbols. We will write to denote a 
sequence of 2 k + 2  layers of the type: 0101 . . -01 ,  and o k  corresponds to the sequence: 
01201201.. . with k + 2  elements. In this notation, (cy20a40) is exemplified by the 
periodic repetition of the sequence: 0101 2 1212020101012120202 (two other representa- 
tions are obtained if one adds to the above sequence uniformly 1 or 2 modulo 3) .  
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The Hamiltonian Ho is perturbed by a variation of the nearest-neighbour coupling 
constant around one. Up to a constant term, eG = - I o (  G). Hence the region of positive 
x is occupied by the class (0); (012), (120), (210). Negative values of x fall into the 
region occupied by the class ( a 2 ) ,  consisting of (Ol), (02), (12), (21), (lo), (20). All 
other ground states coexist at zero. 

In the first order ( E ,  = 3), 

np(O)= I,?,(G)+ Io ,~(G) .  

Although condition 2 is not satisfied, n p  has the form (4.12) with C being the empty 
sequence is the proper extension of I,, since the sequence oao is not allowed). 
There is a new phase (a ’o )  between (a’) and (0). Phases coexisting at the boundary 
( a 2 ) - ( a 2 0 )  are defined by the condition: Ioo(G) = 0, so they are of the form (4.1) with 
A = a’, B = 0, U = 1. Condition 2 is satisfied, and so we can start the induction. In 
the inductive step, we consider a subset of ground states (4.1) with both A and B in 
the form 

a2k,0a’k20. . . O a z k ” ~ O .  (5.1) 
The common core has a similar form, with a at both ends. By laborious inspection 
one shows that in the suitable order N defined by E N ,  the coefficient aN of loco is 

1 m 
E N = 5  k , + m  U N = - -  k , k , .  . . km.  

, = I  (2m)! 

By theorem 2, the new phase ( A u + ’ B )  appears and phases coexisting on borderlines 
( A ) - ( A ” + ’ B )  and (A“”B) - (A”B)  are again of the form (4.1). The phase diagram in 
the vicinity of the borderline (a‘)-(a20) has the following form. In order EN, = 11 the 
phase (a40) appears between (a’) and (a20) .  In order E N ,  = 16 the phase (a60)  shows 
up between (a’) and (a40),  while in order E ,  = 12 the phase ( (Y ‘o~ ‘o )  appears between 
(a ’o)  and (a‘o). In suitable higher orders, (a ’o )  appears between (a’) and (a60) ,  
(a40a60) between (a“) and (a60),  (a20(a40)’ )  between (a40) and ( ( a ’ o ) * a 4 ~ )  and 
((a20)’a40) between (a’o) and (a20a40) (cf figure 1). This process then continues 

Figure I .  The schematic representation of the devil’s staircase appearing at the locus of 
the boundary (a’)-(a’o). Any boundary between phases ( A )  and ( E )  bifurcates in some 
higher order in the manner shown at the right part of the diagram. Here ( a 2 )  is exemplified 
by the periodic sequence of spin values: 010101 . . . , and (0) by 012012,. . (cf text for 
notation). 
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with no borderline being stable. Hence we obtain the phase diagram resembling in 
some sense the devil’s staircase. A similar feature has been found by Uimin [8] for 
the A N N N I  model in a non-zero magnetic field?. 

The analysis of the boundary (a20) - (0 )  shows the phase (a ’o ’ )  which appears in 
order E2 = 6 .  No other phases emerge in this part of the phase diagram in any higher 
order. 

6. Conclusions 

In this paper we have discussed phase diagrams for a class of layered systems defined 
by condition 1. Phase diagrams were studied by means of an inductive argument based 
on the LTE technique. We have shown that in each inductive step, the search for new 
phases reduces to determining the contribution from a restricted set of excitations. 
This set is given in general terms, hence the layered structure forms the basis for the 
emergence of an infinite set of phases. The final form of the phase diagram is determined 
by specific energetical properties of the system considered. The idea behind the analysis 
is in some ways a generalisation of the SF method, with different technical details. 

The generalisations of our method can be outlined as follows. First, one can 
consider a wider class of layered systems, either by changing the basic definition (the 
requirement that ground states are constant in  a layer) or by modifying condition 1. 
In fact theorem 2, the main element of the inductive step, requires assumptions weaker 
than condition 1. Second, at the input of the inductive step one can allow sequences 
constructed of more than just two basic sequences. Finally, systems with many 
parameter perturbations can be considered. We remark that there is no suitable example 
so far for these generalisations. 

The open problem is the interpretation of the phase diagram with an infinite number 
of phases, in view of the potential divergence of the LTE series. For a class of systems 
where the set of ground states is finite, these series are shown to be asymptotic [ 5 ]  at 
least for some values of the perturbation parameters. We do not know about corre- 
sponding results for the case of an infinite set of ground states. 
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Appendix 1. The phase diagram for a set of affine functional 

Let r = { p , }  be a countable set of affine functionals: p, = ( h , ,  a , )  with h, : R + R linear 
and a, E R .  Assume that W = conv r is bounded in R2. We say that p dominates at 
x E R if p ( x )  2 p ’ ( x )  for all p’  in r. The phase diagram for is the separation of R 
into regions of a single functional dominance. It is described by extrema1 properties 
of the set of maxima of W in the following way. 

t This reference has been drawn to my attention by one of the referees of this paper. 
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Lemma. Suppose that max W has a finite number of extremal points. 

that for any p t E  F 
( i )  If  F is an extremal edge spanned by p ,  and p z ,  then there exists x (  F )  E R such 

p ( x ( F ) )  =constant> p ' ( x ( F ) ) .  

( i i )  If po is an extremal point belonging to F ,  and F2 (extremal edges) then the 

(iii) I f  p , ~  F (an extremal edge) but is not an extremal point then it dominates 

(iv) I f  poE max W then it does not appear in the phase diagram. 

region of its dominance is non-empty and is contained between x (  F,  1 and x ( F 2 ) .  

only at x ( F ) .  

Pro05 Recall that for a convex set W, a line P supporting W at po is defined as 
P = { p :  p ( x (  P)) = po(x (  P))} where x (  P) E R is such that W lies entirely on one side 
of P. If po is in max W, then the last condition has the form: 

P O ( X ( f 7 )  3 P ( X ( P , )  P E  w. 
(i) F is an extremal edge and p , ,  p2 are its endpoints. Then F is contained in the 

unique supporting line P passing through p ,  and p 2 .  Define x ( F )  = x ( P ) .  
(ii) po is an extremal point. Then there exists at least one supporting line intersecting 

W only at po (using the Krein-Millman theorem). Obviously po dominates at x ( P ) .  
Let p0e F,  n F2.  Without loss of generality, we may assume that x ( F , ) < x ( F , ) .  If 
x @ [ x ( F , ) ,  x ( F 2 ) ] ,  then W lies on both sides of P ( x ) = { p :  p , ( x )  = p ( x ) } .  If X E  

[ x ( F , ) ,  x ( F 2 ) ]  and po does not dominate at x, then either F,  or F, is not the extremal 
edge. 

(iii) Let po = Ap, + (1 - A  )p2 with p ,  , p2 being endpoints of F. Obviously po domi- 
nates at x ( F ) .  If x f x ( F ) ,  then p l ( x )  f p 2 ( x )  and po is dominated either by p ,  or p 2 .  

(iv) Let p o = ( h o ,  a,), and pb=(ho,  a )  with a such that p l ~ m a x  W. Obviously 
a > a,, hence pb dominates po everywhere. But pb = Ap, + ( 1  - A ) p 2  for some A E [ 0 , 1 ] .  
Hence for any x, po is dominated either by p,  or p 2 .  

Appendix 2. The proof of theorem 2 

Let pG be the affine functional (4 .12 ) .  Without loss of generality we assume that 

Case (a):  aN > 0. We claim that max cow{ pG> has only two extremal points corre- 
sponding to ( A ) (  P ( A )  = ( -e<A) ,  l A l - ' a ~ ) )  and ( A " B )  ( ~ ( ~ 1 , ~ )  = -e(A"B , 0)). Let F be an 
edge spanned by p ( A )  and P ( A " 6 ) .  Then 

e ( A )  ' e ( A U 6 ) '  

1 x (  F )  = - --. I A l  e ( A )  - e t A " R )  

Suppose that G is such that pc lies in or above F. Then 

By (4 .2 ) ,  eG is a linear function of lAtc-l. Substituting for eG and x ( F )  and performing 
simple transformations, one obtains 

Q N ~ * c ~ ( G )  - e G x ( F )  3 e < A " 6 ) x ( F ) *  

l r c g  ( G )  - / A ( < + [ (  G)  3 0. 
Since pC has a common proper extension with A"+' ,  the above condition is equivalent 
to 

0 3 l,c ( G) - l,c,i ( G) = l,cc( GI. 
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Figure 2. The set max W in the case ( b )  of theorem 2. Extrema1 points correspond to 
phases (A ) ,  (A"+ 'B)  and ( A " E ) .  The set W is the triangle spanned by these extrema1 
points. Max W is the bold line. 

But FCG has a common proper extension with AU+'B,  thus I A " - I B ( G ) S O .  Hence G 
can at most lie in F, and in this case I A u + l B (  G )  = 0. The only ground states satisfying 
this condition are (A) and (A"I3). By the lemma of appendix 1,  no other ground states 
appear in the phase diagram. 

Case (b):  ah' < O .  Using structural relations (2.3), one can rewrite (4.12) to the 
form (modulo constant term and term proportional to e , ) :  

n E ( X )  = +I a~ (x )  I ( IpCc ( G )  + ( G )  1 I ~ N  (XI 116 ( G 1. 
We claim that max cow{ p,} appears in this case as in figure 2. To see this, let us 
consider the edge F,  spanned by affine functional corresponding to (A"B) and (,4""B). 
Then 

(A2.1) 

Suppose that pG lies in or above Fl, then e,A#j+lB, > e,  > e(A"B)  and 

laNIls (G)+eGx(Fi)  3 e(A"B+(Fi). 
By (4.2), e ,  is a linear function of 1A"B.  Substituting for e ,  and x ( F , ) ,  after transforma- 
tions one obtains: 

0 3  l A ~ ~ B ( G ) - l f i ( G ) = ~ ( l A ~ ~ B ( G ) - l ~ C i . ( G ) + l B A ~ ~ ( G ) - l U C P ( G ) ) .  

(lAzcB( G )  = IBA"( G )  because of periodicity.) Since A"B has a common proper extension 
with CC this condition is equivalent to: 0 3 lvcc( G ) .  Hence pG can at most lie in F,  , 
and in this case lvcG(G) =0,  so G has the form (4.1). The proof for the edge F2 goes 
along similar lines. The application of the lemma of appendix 1 shows that the phase 
( A U + ' B )  appears. Other statements of theorem 2 also hold, with the formula for the 
width of the region occupied by (A"+ ' , )  obtained by subtracting (A2.1) from the similar 
expression for x( F,)(where A"B is replaced by A).  
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